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The development of weak waves in 
the steady two-dimensional flow of a gas with 

vibrational relaxation past a thin wedge 

By R. P. HORNBY? AND N. H. JOHANNESEN 
Department of the Mechanics of Fluids, University of Manchester, England 

(Received 16 September 1974) 

The method of characteristics is used to calculate the supersonic flow past a 
wedge of small angle with non-equilibrium effects. The wave decay and develop- 
ment distances are presented in a concise similarity form which permits accurate 
extrapolation to very weak waves. The numerical solutions are compared with 
shock-tube flows of CO, and N,O. 

1. Introduction 
The steady one-dimensional flow of a relaxing gas through a normal shock wave 

has been extensively treated in the literature, and it is well known that it is 
possible to construct oblique shock waves from one-dimensional solutions by the 
superposition of a velocity component parallel to the wave. In  particular, it is 
found that fully dispersed normal shock waves, which occur when the speed of 
the approaching flow lies between the equilibrium and frozen sound speeds, lead 
to fully dispersed oblique shock waves when the deflexion through the wave is 
sufficiently small. 

In  the flow past bodies with discontinuous changes in surface slope the shock 
waves and expansion waves are frozen close to the surface, and the shock waves 
conform to the one-dimensional analogy only far from the body; indeed, for 
complicated body shapes it is difficult to assess whether the shock waves can ever 
be truly represented by the one-dimensional equations. 

In  this paper we consider the simplest possible case of the two-dimensional 
flow past a thin wedge and study the development of the wave from the wedge 
tip to a large distance from the wedge. The analogous one-dimensional unsteady 
problem of the development of the wave from a piston started impulsively from 
rest with a small velocity is investigated in the adjacent paper by Dain & Hodgson 
( 1  975). 

The weak-wave analyses for these two flows are very similar (see Blythe 1969). 
A number of papers have presented approximate treatments of these flows but it 
is difficult to obtain precise numerical results which accurately account for the 
essentially nonlinear effects which cause the gradual change from the initially 
frozen shock wave at  the origin of the disturbance to the fully developed wave a t  
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FIGURE 1. Schematic diagram of flow field with fully dispersed wave at infinity. 

infinity, in which convective and diffusive effects balance to give a stable wave 
form (see Lighthill 1956). This is perhaps not surprising when it is appreciated 
that, although the flow may be a small perturbation of the initially uniform condi- 
tions, the non-equilibrium effects are not a small perturbation of the ideal-gas 
conical flows with a straight constant-strength shock wave. 

The flow considered is shown schematically in figure 1, where we have chosen 
Cartesian co-ordinates with the x axis in the direction of the free stream, whose 
velocity is V,. Distances and changes in angles have been distorted to indicate 
clearly the significant features of the flow. The shock wave at  the wedge tip will 
instantaneously deflect the flow through the wedge angle 6, and is therefore 
a frozen shock inclined a t  the appropriate wave angle q&. We shall refer to solu- 
tions which retain all terms in the governing inviscid equations as exact. The flow 
a t  the wedge tip is therefore known exactly and the flow near the tip is frozen to 
the first approximation. At infinity, defined as where botrh z -+ 00 and y + co, we 
expect a shock wave of constant width and direction with equilibrium conditions 
both upstream and downstream. Since all streamlines far downstream of the 
shock must be parallel to the wedge surface we can conclude that the shock wave 
a t  infinity resides a t  a wave angle corresponding to an equilibrium flow deflexion 
0,. The wave structure, but not the location of the wave, can be found exactly 
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by integrating the conservation, rate and state equations normally through the 
wave interior. 

The frozen shock wave a t  the tip decays with increasing distance from the 
wedge surface, and the equilibrium shock angle is less than the corresponding 
frozen shock angle. In  the limit 6, --f 0 the two angles degenerate into the equi- 
librium and frozen Mach angles, respectively. The normal frozen Mach number 
at infinity may be greater than, equal to or smaller than one. The latter two cases 
lead to fully dispersed waves, while in the first case the wave is partly dispersed 
and consists of a frozen discontinuity followed by a relaxation region. 

To determine the flow we must determine the decay of the frozen shock and 
the history of the development of the wave towards its ultimate ‘one-dimen- 
sional ’ form. Far downstream we have equilibrium conditions, and the pressure 
and flow angles are uniform. Other properties, however, change from streamline 
to streamline because of the different initial histories of particles on different 
streamlines. We shall concentrate on flows with fully dispersed or weak, partly 
dispersed waves a t  infinity, i.e. on flows with small 0, (in the appropriate sense), 
but the general calculation methods are equally applicable to flows with strong 
shock waves. 

The weak-wave flows are particularly interesting because the differences 
between non-equilibrium and frozen (or ideal-gas) flows are very large. Also, the 
conventional relaxation length no longer serves as a characteristic length scale. 
It was pointed out by Hodgson & Johannesen (1971) that the thickness of 
fully dispersed waves may be orders of magnitude greater than the relaxation 
length. The development length scale along the wave is of course even larger. 

2. Calculation procedure and a typical example 
Because of the inadequacy of the analytical methods the flows must be calcu- 

lated numerically, and of the available methods we have chosen the method of 
characteristics, which, although lengthy, is probably the most accurate and also 
has the advantage of being closely related to the actual physical features of the 
flow. 

We introduce non-dimensional variables based on free-stream conditions. 
A prime indicates a dimensional quantity and in what follows all unprimed 
variables are non-dimensional. 

p‘ = pLp ,  p’ = pkp, T’ = TLT, (1 )-f 3) 

(4) (V’, u’, u’) = (R‘TL)* ( V ,  U, v) ,  

and (x’, y’, . . .) = (R’TL)*/(pL @L) ( x ,  y ,  . . .). 

p ,  p and T are the pressure, density and translational temperature, u and v are 
the velocity components, R‘ the gas constant, s the real-gas entropy, v the vibra- 
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tional energy, cp and cVib the frozen and vibrational specific heats, and CD is the 
relaxation frequency defined by the simple relaxation equation 

Du/Dt = pa(??- g), (9) 

where the bar indicates the equilibrium value of cr, which is a function of T only. 
The flow equations become in characteristic form (e.g. 

change the notation slightly) 
dyldx = tan (8+p), 

+d8 = - d y  (y -  
p V2 tanp V3 sin p sin (8 + p) 

on the left-hand characteristics, 

dyldx = tan(8-p), 

on the right-hand characteristics, and 

on the streamlines. Here ,u is the frozen Mach angle and y the frozen specific-heat 
ratio. In  addition the equations of energy and state are valid everywhere in the 
flow: c ,T+u+&V2 = constant, 

p = p T .  (18) 

The last equation is in fact the only equation which differs from its dimensional 
form, by the absence of the gas constant €2'. 

Viscosity and heat conduction have been neglected throughout. This restric- 
tion is no more severe than in ordinary ideal-gas compressible flow theory. 

The boundary conditions for the above set of equations are 8 = 8, on the wedge 
surface together with the conditions on the frozen shock wave, i.e. conditions 
immediately downstream of the shock must satisfy the oblique frozen shock 
wave relations. It should be noted that the location of the shock wave and its 
local angle are not known a priori. 

To proceed with a numerical calculation we require the functional relation- 
ships 3(T)  and CD(T). However, if we confine ourselves to weak-wave flows then 
both functions vary only slightly in the small intervals of T encountered and the 
general features of the flows will not be affected by putting 

CD = 1, d3/dT = cVib = constant, (191, (20) 

(21) 
- so that g = 3oo+cvi,(T- 1). 

In  the cases considered the errors introduced by these simplifications will not 
exceed 10%. It is straightforward to make more accurate calculations by 
incorporating the proper functional relations for ?? and CD in the computer 
program. 

A network based on the left-hand and right-hand characteristics and using 
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interpolation along the streamlines at  each network point was chosen. Because 
of the very gradual changes in the far field it was not obvious at the outset that 
the conventional step-by-step method would work when the neighbouring 
characteristics become nearly parallel to the shock wave. Certainly, the usual 
choice of equal step sizes along the wedge surface or the shock wave would have 
led to a prohibitively large number of steps in the far field. We therefore chose 
a ‘thermodynamic’ step size; more precisely, steps along the wedge surface were 
chosen which all corresponded to roughly equal changes in u. This led to steps 
which corresponded to similar changes in the thermodynamic variables, although 
the geometric step size varied greatly. With this network the calculations 
proceeded smoothly without difficulties or instabilities and resulted in a 
surprising accuracy. The usual check on the accuracy by varying the step size 
was supplemented by conservation checks. The integrated energy equation is 
incorporated in the calculation procedure and is therefore automatically satisfied. 
The momentum and continuity equations were integrated along left-hand 
characteristics and found to be satisfied in general with an accuracy of the 
order of 1 yo. 

A special procedure was needed for the flows with fully dispersed waves a t  
infinity. Here the shock wave decays to zero strength before the calculation is 
completed. This manifested itself by an overshoot to-negative shock strengths 
but was easily dealt with by interpolating to zero strength and then replacing 
the shock wave by a frozen Mach wave in the remaining steps at  the front of the 
flow field. 

A very important additional check is possible with the flows considered here 
because we know the exact wave profiles a t  infinity if not their locations. Direct 
integration of the conservation equations in a direction normal to the wave at  
infinity gives the profiles of all variables. This is true whether the wave at  infinity 
is fully dispersed or partly dispersed. To avoid difficulties at  the ends of a fully 
dispersed wave profile, where the gradients are very small, it  is best to integrate 
in both directions from the point of inflexion. An outline of the method is given 
by Hodgson & Johannesen (1971). 

The solution can be projected along any curve in the x, y plane. For ease of 
comparison with the computer output we in general used projections along the 
characteristics. 

To decide which flows to  calculate we must first discuss which parameters 
control the flow. The free-stream pressure and relaxation frequency per unit 
density do not affect the physical nature of the flow but simply scale the co- 
ordinates and have already been incorporated in the non-dimensionalization 0,. 
and Ma, the frozen free-stream Mach number, are obvious parameters and an 
examination of the non-dimensional governing equations reveals that apart 
from y, which we shall keep constant, the only other unspecified parameter 
is cVib. We have already made the assumption of a constant but different specific 
heat for each flow. For any real gas the free-stream temperature is defined 
implicitly by Cvib. For example, if we calculate a set offlows with Cvib = 1-00 then 
these calculations are valid for all those flows with a free-stream temperature 
for which Cvib = 1-00. 

8 F L M  69 
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FIGURE 2. Pressure profiles along the wave. x , exact solution at infinity, 
0, = 2*00", M, = 1.49, cdb = 2-12. 

We chose discrete values M, = 1.4, 2.6 and 3.8 and Cvib = 0.5, 1, 2 and 3 and 
calculated 48 flows, covering a range of 0, from 0-2' to 4.4" and including both 
fully dispersed and weak, partly dispersed waves at  infinity. 

We shall illustrate the calculation procedure by looking in detail at the calcula- 
tion of one particular flow, that with 0, = 2-00', M, = 1-49 and Cvib = 2.12. 
The reason for this particular choice of parameters is that these values correspond 
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FIGURE 3. Variation of the departure from local equilibrium along successive 
left-hand characteristics. 

to a realizable shock-tube flow of CO, at  a free-stream temperature of 600 OK. 

For this particular calculation we used 50 steps along the wedge surface, changing 
to constant step size after 90 % of the change in vibrational energy had taken 
place. This final constant step size was about ten times the initial step size. 
A general picture of the wave development is shown in figure 2, which clearly 
demonstrates the gradual change from a frozen shock a t  the tip to a fully dis- 
persed wave at  large distances. Also shown is the exact solution at infinity super- 
imposed on the most distant wave profile obtained by the method of charac- 
teristics. The agreement is remarkable. 

Because the physical (x, y) co-ordinate system involves distances that are both 
very large and very small in each co-ordinate on the same characteristic (or on 
the shock wave) we found it more convenient to plot the results in a distorted 
co-ordinate system defined by 

X = x-y/tan+,, Y = y, 

where q50 is the initial shock angle. 
Figure 3 shows the departure from equilibrium of the vibrational energy 77 - cr, 

plotted along the left-hand characteristics emanating from the wedge surface and 
meet@g the frozen shock wave at the point indicated by a cross. Only selected 
characteristics are shown and are indicated by their numbers. This is a very 
effective way of showing, in a qualitative manner, all the decay processes in the 
flow. The development of the equilibrium core, where 8 = cr, can be traced 
simply, and the decay of 5 - u on the wedge surface can be seen from the varia- 
tions near y = 0. The maximum value of the departure from equilibrium is 
always embedded in the relaxation region, so that the path of the maxima 
represents the wave trajectory. The approach of the maximum to its ultimate 
value (77 - cr)maxm determines the rate at  which the wave develops. The decay of 

a-2 
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the frozen shock is also adequately expressed by following the variations where 
the left-hand characteristics terminate. Notice how the frozen shock reached 
zero strength before the maximum value of the departure from equilibrium had 
reached its asymptotic value at  infinity. This was true for all the computed flows 
which were fully dispersed at  infinity and was far more apparent as the wave 
strength was decreased. The non-uniformities in the flow variables far down- 
stream near the wedge are not exhibited on this figure because 5 - u is zero in 
this region. 

The decay and development processes are best analysed quantitatively by 
first normalizing quantities and then plotting on a logarithmic scale. We shall 
represent all decay and development processes by using the departure from 
equilibrium I' = 3- u, and shall normalize this quantity for the specific process 
under discussion in the following ways. 

The frozen shock decay is represented by plotting (Fa- -  ram)/(r0- ram) 
against y. Here F a  is the departure from equilibrium at the frozen shock, Yo its 
value a t  the wedge tip and ram its value at infinity. If the wave is fully dispersed 
at infinity, Fa, = 0 and the expression to be plotted reduces to ra/rO. 

The shock wave development is illustrated by plotting 

(rmax- rmax m ) / ( r o -  r m a x  oD) 

against y. Here rmax is the maximum value of I? along a right-hand characteristic 
and rmaxm is the corresponding quantity for the fully developed wave at infinity. 
Since initially the maximum of r is located at  the frozen shock, this expression 
varies between 1 and 0. 

The approach towards the equilibrium state on the wedge surface, and hence 
the appropriate relaxation distance, waa investigated by plotting rw/r0 against x, 
where rW is the value on the wedge surface. 

For each decay and development process in this numerical example, the 
accuracy of the calculation made with steps corresponding to 2- of the total 
cr variation on the surface was checked by using steps corresponding to and 
& of the u variation. 

By plotting all the results in the above manner we shall be able to define 
precisely what we mean by development and decay distances. When the three 
processes were investigated in the region close to the wedge tip they were found 
to be adequately described by the initial gradients, which are known exactly and 
are derived in the appendix. Indeed, the whole relaxation process on the wedge 
could be described by the initial gradient, giving a straight line on a logarithmic 
plot. The results for the initial behaviour of the shock wave and for the relaxation 
process 'on the wedge are therefore not given here. This result for the initial and 
wedge processes was found to be general and to hold with a high degree of 
accuracy for all the computed flows. 

Figure 4 shows a logarithmic plot of ra/r0 against y for the decay of the frozen 
shock (in this example the wave was fully dispersed at infinity). This shows that 
the outer decay of the frozen shock can be adequately represented by the function 

0. 
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FIGURE 4. Decay of frozen shock. 0, steps; x , 2; steps; 0, &j steps. 

where A represents the value of ra/r0 at y = 0 obtained by extending the far- 
field line on figure 4 to the intersection with y = 0, and ye is a decay distance. 
Also shown on figure 4 is the line representing the initial gradient given in 
equation (A 9) in the appendix. 

A logarithmic plot of ( rmax - rmax m)/(I'o - rmax m) is shown in figure 5. Again 
there are roughly two characteristic rates of development, the first represented 
by the initial gradient and the other represented by the line 

where B is the value a t  y = 0 and ya is a development distance. 
(rmax-rrnax c o ) / ( r o - r m a x w )  = B ~ X P  ( - Y / Y ~ ) ,  (23) 
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FIGURE 5. Shock wave developrncnt. @, & st,eps; x , & steps; 0, steps. 

I n  both figures 4 and 5 points with A, +5 and & step size are indicated. It 
was concluded that the & step size was adequate and for consistency this step 
size was used in all computations. It should be noted that, not surprisingly, the 
calculation of the far-field development is less accurate than the calculation of 
the far-field shock decay. Because of the logarithmic way of plotting, the 
inaccuracy of the points for large y is of course greatly exaggerated. The 
percentage scatter is quite small. 

Graphs of this type were plotted for all the calculated flows and used for the 
subsequent analysis. The far-field lines were drawn by hand. This was deemed 
to be as accurate as any more sophisticated curve-fitting procedure, which would 
lead to results depending strongly on the precise choice of points to be included. 



Weak waves in a vibrationally relaxing gas 119 

3. Similarity representation of far-field decay and development 
processes 

All the flows calculated were treated in the same manner as the numerical 
example in 9 2. As already mentioned, the initial behaviour of any flow close to 
the wedge tip and on the wedge surface was adequately described by the exact 
initial gradients given in the appendix. The far-field behaviour is characterized 
by the quantities A and y, for the frozen shock wave decay and B and ya for the 
shock wave development. So far we would expect these quantities to be functions 
of &fa, #,, and Cvfb. However, when plotting the results in various ways as func- 
tions of these parameters and bearing in mind that M, and 0, can be combined, 
in so far as shock wave structure at  infinity is concerned, into a single variable 
M,, , the frozen Mach number normal to the wave at infinity, it was found that 
what matters for any one flow is the strength of the wave a t  infinity compared 
with the strength of the fully dispersed wave of maximum strength at  infinity 
for the same values of M, and Cvib. 

This led to plotting the quantities against a normalized wedge angle 6,/0:, 
where 0; is the wedge angle which for the particular values of M, and Cvib leads 
to a maximum-strength fully dispersed wave at  infinity. In  other words, 0; 
corresponds to the case where the equilibrium wave at  infinity lies in the direction 
of the frozen free-stream Mach lines. 

Plots of A and B against #,/Oz immediately led to a collapse of all the calcu- 
lated values, but for y, and yp a further normalization was necessary. It was 
found that a suitable normalization factor was yzl, where yal is the well-known 
linearized-theory frozen-shock decay distance. yar is usually derived from linear- 
ized theory, but a simple derivation from the initial gradients is given in the 
appendix, equation (A 13). Using y;? as a normalizing factor led to the collapse 
of all calculated values of y, and ya onto two single curves when plotted against 
#,/O;. This shows that although yal is quite unable to describe the decay of waves 
of finite strength it does contain the correct functional dependence on H, and Cvib. 

The resulting curves for ya7 A ,  yp and B are given in figures 6 (a),  (b ) ,  ( c )  and (d). 
It is felt that the scatter is within the computational and curve-fitting accuracy 
and that these graphs can therefore be used as universal curves for the prediction 
of wave decay and development. 

It is shown by Dain & Hodgson (1975) that the corresponding analysis of flows 
generated by an impulsively started piston leads to four universal curves for the 
far-field which within the computational accuracy are identical to figures 6 (a)-(d). 
In  particular, if the results of the two papers are combined it is found that for 
engineering purposes the points in figures 6 (c) and (d )  corresponding to #,/e: < 1 
may be represented by the straight lines 

and 
(24) 

(25) 
There is no justification for attempting more accurate curve fits, partly because 

of the numerical errors, but also because relaxation frequencies are never known 
with a very high accuracy. 



120 R. P. Hornby and N .  H .  Johannesen 

I I 1 i i i i i 

: 
(a) 0 

3 
e . 

0.2 0.4 0-6 0.8 1.0 1.2 1.4 1.6 1.8 

I I I 1 1 1 1 1 

(b) 

e - o o o  

% 
00 

%a 

% 

I 1 1 1 1 1 

0.2 0.4 0.6 0.8 1-0 1.2 1.4 1.6 8 

FIGURES 6 ( a )  and (b) .  For legend see facing page. 



Weak waves in a vibrationally relaxing gas 121 

100 

1 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

1 



122 R. P. Hornby and N .  H .  Johannesen 

Dain & Rodgson discuss in more detail this analogy between the two types 
of flow. 

4. Entropy production and entropy layer 
The real-gas entropy is increased by two mechanisms: the standard frozen 

shock entropy production and the production due to non-equilibrium relaxation. 
In  flows with strong shocks the frozen shock production is no doubt dominant, 
but we shall show that in the type of flow discussed here the production due to 
relaxation is the more important. 

On the wedge surface there is an entropy jump across the frozen shock followed 
by a continuous entropy increase due to relaxation. Through the fully dispersed 
wave at  infinity there is an entropy increase solely due to relaxation, but this 
increase can also be calculated from the equilibrium shock relations without any 
knowledge of the non-equilibrium processes. It is of the same order as the increase 
across the frozen shock at  the tip and in fact very slightly smaller. We can make 
an interesting physical cheok on the mechanidm of entropy production by showing 
that the integrated entropy production due to the relaxation processes occurring 
within the shock wave is asymptotically equal to the entropy jump given by the 
equilibrium shock relations. For the numerical example of 8 2 the agreement was 
excellent. 

On the wedge surface the entropy increase across the frozen shock is of order 
0:. Along the wedge the entropy increase due to a small change of vibrational 
energy is 

as = (T;i - T-1) du, 

where it has been assumed that the vibrational mode is in internal equilibrium, 
so that it is possible to define a vibrational temperature Tvib. With 

= i f , + C v i b ( T - l ) ,  fl = if,+cvib(Tvib- 1) 

the entropy production along the wedge becomes 

An approximate solution is obtained by using the fact that on the wedge 
- 

(28) 
- 
u-0- = ((r-u)oexp(-x/xu,), 

where x, is the relaxation distance on the wedge surface (measured in the 
x direction). With the rate equation in the form 

v afl  = p(if - u) ax/cos e, (29) 

we get 

Neglecting terms in the integrand of order 0: and writing (5 - (r),, = cvib(To - I), 
this becomes 

AS = Cvib(T0 - x,[I - exp ( - ~X/Z,)]/ZV, cos 0, 
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and for x+ 03 Asm = Cvibpo(T0 - l ) ' ~ ~ ~ / a J $  cos 6,,. (31) 

For Cyib of order one this is of order 8% and for small values of 6, is therefore 
much larger than the entropy production across the frozen shock a t  the tip or the 
equilibrium shock a t  infinity. 

The entropy layer on the wedge has a width of the same order as the develop- 
ment distance and within it there is a gradual transition from an entropy value 
of order 6; on the surface to one of order 8: a t  infinity. 

5. Experiments 
The experiments were performed in the Manchester University Mark I1 shock 

tube, which has a working section 50 x 300 mm. A wedge mode1 of included angle 
7.4", chord 36 mm and span 200 mm was supported a t  different incidences in the 
working section giving possible inclinations of the upper surface to the free stream 
between 0 and 5". Choking was prevented by insertion of a plate of thickness 
12.7mm on the floor of the working section upstream of the wedge. This plate 
extended to the front of the rectangular section, which has the form of a scoop 
inserted in the first part of the low-pressure circular section of the shock tube of 
diameter 300mm. As will be seen from the photographs (figure 7, plate I), the 
expansion a t  the rear end of the plate did not affect the flow on the upper surface 
of the wedge. 

Tests were first made using schlieren observations to  check that the flow was 
steady and uniform, and the main observations were made using interferometry. 
Typical photographs are shown in figures 7 ( a )  and (b) .  The test gases were care- 
fully dried N,O (figure 7 a )  and CO, (figure 7 b ) .  These two gases have similar 
thermodynamic properties but differing relaxation frequencies and large specific 
heats of vibration at  moderate temperatures, the characteristics temperature of 
the bending modes being 847 OK for N,O and 959 OK for CO,. 

Figure 7 (a) shows a flow of N,O with a free-stream equilibrium Mach number 
of 1-68. Using the data of Rees (1968) and Bhangu (1966), the vibrational specific 
heat, relaxation frequency per unit density, pressure and temperature in the 
free stream were calculated as 2.28R', 5.3 x lo6 s-l amagat-l, 21.8 kPa and 
583 OK. 

Figure 7 ( b )  shows a flow of CO, with the same free-stream equilibrium Mach 
number. Using the data of Rees (1968) and Johannesen et al. (1962) the vibra- 
tional specific heat, relaxation frequency per unit density, pressure and tempera- 
ture in the free stream were calculated as 3-19R', 0.89 x 106s-1amagat-l, 
22.4 kPa and 597 O H .  

Comparison of figures 7 (a)  and ( b )  shows the scaling effect of the relaxation 
frequency. The theoretical density fields were calculated using the methods 
described in 5 2 .  The fringe shifts are related to the density field by the equation 

' 

AN(%', Y') = (D'K/hpA) ( ~ ' ( x ' ,  Y') --pL), (32) 

where D' is the width of the shock-tube working section, K the Gladstone-Dale 
constant- Sor light of wavelength h and pi is the density of the gas a t  normal 
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temperature and pressure. With a light source with h = 43’70& D’K/h was 240 
for N,O and 212.1 for CO,. 

The calculated and measured fringe patterns are compared in figure 8 for N,O 
and in figure 9 for CO,. The differences can reasonably be ascribed to the failure 
of the experiments to model the theoretical flow. Most important are the effects 
of the small but, nevertheless, finite bluntness of the wedge and the interaction 
of the shock wave with the side-wall boundary layers. The scales of the relaxation 
effects do however compare favourably and we feel justified in concluding that 
the thdory gives the more accurate evaluation and that improvements in the 
experimental techniques, which would in fact be very difficult to achieve, would 
leadto improved agreement with theory. 

FIGURE 8. Comparison of experimental and theoretical fringe patterns for flow in N,O with 
Ow = 2.00°, MBm = 1.68 and cd,, = 2.28. __ , experiment; x , theory; 0,  frozen shock 
location from theory. 
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6. Conclusions 
It has been demonstrated that the initial flow close to the wedge tip can be 

described by the initial gradie ts, which are known exactly, and that the far field 

universal functions which define the decay of the frozen shock and the far-field 
development. Dain & Hodgson (1975) present identical conclusions for the flow 
initiated by an impulsively started piston and draw the appropriate conclusions 
about the similarity between these two types of flow. 

can be described with sufficient \ ccuracy by four computationally determined 

FIGURE 8. Comparison of experimental and theoretical fringe patterns for flow in N,O with 
Ow = 2.00°, MBm = 1.68 and cd,, = 2.28. __ , experiment; x , theory; 0,  frozen shock 
location from theory. 
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FIGURE 10. Network for calculation of initial gradients. 
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Appendix 
The tip gradients have been derived by several authors, e.g. Capiaux & 

Washington (1 963) and Sedney ( I  970). To translate their results into our notation 
is a lengthy process and we therefore present a simple derivation directly from 
the compatibility relations for a left-hand characteristic 1-2 in figure 10. We also 
indicate briefly how the particular gradients relevant to our investigation can 
be derived. In  particular, we present a simple derivation of the linear value for 
the frozen shock decay distance. 

The compatibility relation for the characteristic 1-2 is, from (1 l), 

From the geometry of figure 10 we have 

sin ('+P)osin ($-')adz, 
Y 2 - Y 1 =  sinPo 

and making use of the component of the momentum equation perpendicular 
to the wedge surface, which gives that to the first order the normal pressure 
gradients are zero, we have 

where dp is the pressure change along the frozen shock wave behind the shock. 
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Hence 

where (df9/dp)o is taken along the shock wave and is known from the standard 
relations for oblique shock waves. 

The pressure gradient along the wedge is 

From these gradients it is easy to find any other gradient which may be required. 
In  particular, we can find the gradient of the departsure from equilibrium used 
in plotting the decay of the frozen shock. 

The curvature of the frozen shock at the tip is 

The energy equation may be written as 

(Cp/Cvib) d5  + d a  + v d v = 0. (A 7) 

Along the frozen shock d a  = 0 and since 

a/az = ks a p # ,  dz = dy/sin # 

we have 

so that 

where (d V/dp)o is known from the oblique shock wave relations, 
In  the linear approximation 

V d V = - dp/p, 

d Vjdp = - l/yaM,, 

df3/dp = (M: - l)*/yM2,, 

so that 

It is slightly more difficult to find 

I?, is known but rmax , will have to be found in each case by f i s t  determining the 
wave angle at  infinity either by trial and error or by solving the shock wave cubic. 
This gives the normal Mach number a t  infinity, and the equilibrium shock wave 
structure can then be determined. The analytical expressions will not be given 
here. In  our calculations rmax , was found directly during the computational 
procedure. 
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FIGURE 7.  Flows of (a )  N,O and ( b )  CO, with a free-stream 
equilibrium Mach number of 1.68. 
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